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On a similar solution for a turbulent half-jet along a 
curved streamline 

By S. UCHIDA AND T. SUZUKIf 
Department of Aeronautical Engineering, Nagoya University, Nagoya 

(Received 5 December 1967) 

An analysis of the mixing of a turbulent half-jet along a curved streamline is 
presented. Equations of motion referred to streamline co-ordinates are simplified 
by boundary-layer approximations and integrated under the assumption of 
similarity. A curved potential flow is dissipated by turbulence in the mixing 
region, resulting in a maximum value in the velocity distribution across the 
stream for convex flows, while the distribution is monotonic for concave flows. 
Pressure distributions across the stream are also presented. 

1. Introduction 
In many cases of turbulent mixing in boundary layers and free jets, the 

curvature of streamlines has no significant effect, but there are some cases, as 
shown in figure 1, in which the effect of streamline curvature should be taken 
into account, so that the pressure gradient across the streamline is no longer 
zero. Cases (a) and ( b )  are the boundary layer and the wall jet, respectively, 

PI ’ P2 

(C) (4 
FIGURE 1. Flow patterns of curved mixing. (a )  Curved boundary layer. ( b )  Wall jet 

(Coanda effect). (c) Curved jet. (d )  Curved half-jet. 

t Present address: Princeton University, Princeton. 
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along a curved solid surface. Cases ( c )  and ( d )  are the jet flows subject to a pres- 
sure difference. Case (c)  is the curved jet as shown in ground-effect-machines 
and case ( d )  is the curved half-jet observed, for instance, in the re-circulating 
flow behind a flat plate placed perpendicularly in a uniform stream. The present 
analysis is concerned with the curved half-jet, in which the velocity is finite, on 
the upper side, while it is zero on the lower side. Uchida & Watanabe (1966, 
p. 677), and Uchida, Watanabe & Takada (1967) obtained a similar solution for 
laminar flow of such a curved half-jet referred to the streamline co-ordinates, 
which has been used by Yen & Toba (1961) for the curved boundary-layer flows. 
A similar procedure is extended to analyse turbulent mixing along a curved half- 
jet by replacing molecular kinematic viscosity by a turbulent kinematic vis- 
cosity which is proportional to the streamwise co-ordinate. 

2. Fundamental equations 
A steady two-dimensional flow of turbulent mixing along a curved streamline 

in incompressible fluid is considered. All physical variables are made non- 
dimensional in terms of some reference quantities, where ( l / 2 )  p,%: is used as the 

(4 (b)  

FIGURE 2. Streamline co-ordinates. ( a )  Convex flow (C > 0). ( b )  Concave flow (C  < 0). 

standard of stresses. Reynolds number is also defined by those reference quantities 

In order to describe the flow in a curved half-jet, the streamline co-ordinates, 
a and p, are employed as shown in figure 2. The extension parameters of the co- 
ordinates are defined by ha = asjaa and hj  = anlap, where s and n are the arc 
lengths along a streamline and along a normal to the streamline, respectively. 
These variables must satisfy the condition of orthogonality of the co-ordinates, 
which is expressed by Gauss’s equation 

I 

as €2, = Gs lS/ CS. 

To satisfy the equation of continuity 

divV = 0 
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the stream function $ is introduced, and is taken as equal top,  one of the stream- 
line co-ordinates. Then the velocity component u is simply given by l/hg and v 
is identically equal to zero, 

In  order to derive the equation of motion in an explicit form, turbulent stresses 
are assumed to be expressed by the use of turbulent kinematic viscosity e in 
place of molecular kinematic viscosity v. In  general cases E should be a function of 
place, i.e. of a and p. This treatment seems to be most convenient to analyse such 
turbulent flows deformed in a two-dimensional field. 

Normal stresses craa and app, and shear stress rap which are made non-dimen- 
sional in term of reference dynamic pressure (+)psiZz, are given in the general 
orthogonal curvilinear co-ordinates as follows : 

where ra, = "( 2pe [ - - + ~ ~ ] - ~ p e d i v V ) ,  1 au 
Re ha& huhp ap 

rpp = R r ( 2 p e [ i ~ ~ + ~ ~ ] - ~ p d i v V  2 

p P hph, 3 

and rap = rga = R, { pe [? -- :a ($) +:$(;)]I. 
p and e are made non-dimensional in terms of reference density p a  and reference 
kinematic viscosity ijs, respectively. p is put unity hereafter. The force compon- 
ents in a and p directions acting on a fluid element of unit volume are expressed 

and Fp which is obtained by the cyclic change of variables. It is noted here that 
Fa and Fp are made non-dimensional by referring to (4)psiZ:/is. 

The equations of motion referred to the orthogonal curvilinear co-ordinates are 
obtained from ( 5 ) ,  ( 6 ) ,  ( 7 )  and (2). They are given by 

for a component and its cyclic change of variables for p component, where 
5 denotes the vorticity defined by 

C = (l/hahg) [a(h,~v) /aa-  a(hau)/aPI. (9) 

The equations of motion referred to the streamline co-ordinates are given by 
putting v = 0 in (8). The 01 and ,8 components of the equations are: 
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3. Boundary-layer approximation 

of magnitude are assumed to be 
The boundary-layer approximation is now introduced, in which the orders 

Order [PI = Re-+, Order [ha, h,, u,p,  a,  s] = 1. 

Gauss's equation of orthogonality and equations of motion are then simpli- 
fied into the following equations: 

where l/Ra = (l/h,h,) [aha/a,8] represents curvature of streamlines. Equation (15 )  
expresses that the centrifugal force is counter balanced by pressure gradient 
across the stream. It is found that the effect of curvature of streamlines should 
be taken into account when its magnitude has the order of Rt. Elimination of 
pressure from the equations of motion yields the vorticity equation 

where 5 = - (l/h,h,) [a(hau)/a,8], and h,u = 1 from equation (3 )  should be sub- 
stituted. The problem is now to solve ha and h, as functions of  a and /3 from the 
equations (13) and (16) .  Equation (15)  will be used to  determine pressure dis- 
tribution. 

As the dependent variables, ha and h = ha/h, are used rather than ha and hF. 
With these variables, Gauss's equation and the vorticity equation are given by 

Boundary conditions are required for the flow to be smoothly joined to outer 
non-viscous potential flow at p = +a and to zero velocity a t  ,8 = -m. Since 
h = u/( l /ha) and ha = h, in potential flow, h should tend to unity at  ,8 = + co 
with vanishing derivative ah/a/3, and h should tend to zero at B= -a. These 
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boundary conditions are expressed by 

(19 )  h = 0, a t  p = - 03. 

It is seen that h is the velocity ratio, or the reduction of velocity in the mixing 
region due to turbulent stresses, while l /h ,  may be interpreted as the velocity 
of a hypothetical non-viscous flow, since it is equal to the velocity u at p = + 00. 

1 A =  1, ah/ap=o at p=+03, 

4. Similar solutions 

independent variable g and its functions: 
It is found that a similar solution can be obtained by introducing the single 

} (20 )  
7 = (Be/~)#.@/a, h = A(g), h, = arnH(7)? c = 2 a z ~ ,  

u = 1/hp = a-mA/H, p = a-2”P(g), 
where m represents the effects of streamwise pressure gradient. It is seen that the 
width of mixing region develops in proportion to a. 

Gauss’s equation is transformed and integrated to the form 

[ ( A / H )  H’]’ = 0, giving ( A / H ) H ’  = C (21 )  

where ’ means dldg and the constant C represents a curvature parameter as 
shownlater. 

The vorticity equation is given by 

2[A(H-2AA’)’]’  + T ( H - ~ A A ’ ) ’  + ( 1  + 2m) H-2AA’ = 0. ( 2 2 )  

By the use of (21 ) ,  H is eliminated from the vorticity equation, which then 
gives the differential equation for A 

2A2(A2)’”+[(A2)’+(g-8C)A](A2)‘’+[(l+2m)A-2C(g-4C)](A2)’ = 0. ( 2 3 )  

Boundary conditions for A are 

a t  g = -00. 

A =  1 ,  A ’ =  0, a t  g =  

A =  0, 

H can be integrated from (21 ) .  Assuming H = Ho at g = 0, it  is given as a function 
of A: 

(25 )  H/Ho = exp p/: A-l dg] . 

When A and H are obtained, the velocity u can be calculated by 

u = l / h l =  h/ha = H C ~ ~ - ~ [ A ( H / H O ) - ~ ] .  

P‘ = 2(A2 /H3)  H‘,  or P’ = 2 C ( h / H 2 ) .  (27 )  

(26 )  

Substituting (20)  into (15 ) ,  the pressure gradient is expressed by functions of the 
similarity variable : 

It is integrated to the form 

P = Po + 2Hc2  C A(H/H0)-’ dg. 1: 
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The shearing stress along zero-streamline is calculated from (6). Since the non- 
dimensional density p equals unity in incompressible flow, it is 

Substituting (20), it  is given by 

( ~ , p ) p = ,  = 4Hf2(12e/a)-~a-2m [A(AH-2H$)'],= 
= 4Hg2(Re/5)-4 a-Zm[A(A' - ZC)],, ,. (30) 

The form of zero-streamline is now calculated by transforming the curvature 
of streamlines 

Substituting (21) and H = H, along the zero-streamline, we have 

1/R, = (l/huhg) [ah,/a/3] = (R,/a)*a-(1+m)hH-2H'. 

(1/R& , = C(Re/a)3 a-(l+m)/H,. 

(31) 

(32) 

It is noted here that the constant C represents i~ curvature parameter, positive 
for the flow along a convex streamline, and negative for a concave streamline. 
Denoting the angle of inclination of zero-streamline by 6, its curvature is calcu- 
lated by 

A relation between 0 and a along the zero-streamline is obtained from (32) and 

( i / ~ , ) ~ = ,  = - aeps  = - (i/h,) [aelaa]. 

ae = - c(R,/a)+ a-laa, 

(33) 

(34) (33) 

whichisintegratedto 

The derivative da/dO is given by 

a = exp { - C-l(R,/a)-i (0 - O,)]. (35) 

In order to calculate the form in Cartesian co-ordinates, ax/& = cos8 and 
ay/as = sin B are transformed by 

(a~ /aa )~=  , = (ha)p= = amHo. 

Those are given ax/aa = Hoam cos 0, ay/aa = Hoam sin 6.  (37) 

Substituting (35) and (36) into (37), x and y co-ordinates of zero-streamline are 

Integrated forms of x and y are given with a parameter 

a = ( 1  + m)-1 C(R,/fT)* 

H ,  eoo/a (cos 0 - a sin 0) e-oia - 1 

H, e@& (sin 0 + a cos 8) e-@a - a 

as follows: x = xo+- 
1 + m  1 +a2 

Y = Y O + =  1 +a2 

(39) 
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The non-dimensional arc length along streamlines is calculated by 

Along zero-streamline it is integrated to 

(s))=~ = so+Hoalf”/(l+m). 

The arc length normal to the streamline is given by 

= no+Hoal+~(R,~u)-~C-l[(H/H*) - 11. (41) 

A combined parameter (Re/a)& n/s, which corresponds to y = (Re/u)3P/a, may 
be used conveniently to express distributions of quantities in similar solution. 
Choosing so = no = 0 it is given by 

(R,/a)+n/s = (1 + rn) C-l[(H/Ho) - 11. (42)  

5. Potential flows matching to the curved half-jet 
The outer potential flow matching to the inner mixing zone of curved half- 

jet is now considered. Fundamental equations for potential flow are 

divV=O and { = O  (43) 

and are identically satisfied by a stream function $ and velocity potential $, 
which are defined by 

(44) I u = (‘/hp) (W/aP)  = (1/ha) (a$/aa), 

V = - (‘/ha) (a$/aa) = (l/hPtP) (a$/aP)* 
In  order to refer to streamline co-ordinates, a and p are taken to be 

a = $, P = ? h a  

Then the velocity components are 

U = l/hp = l/h,, V = 0. 

(45) 

(46)  

It is known that the flow pattern becomes homogeneous as shown by h, = h,. 
Substituting ha = hp = h 

into Gauss’s equation, we have 

a2(ln h) /aa2 + P(ln h)/abz = 0. (47) 

The soIution should be matched along p = 0 with the half-jet solution at 
p + +a. If we denote the value of H at 7 --f +a, which tends to 00 or 0 in the 
convex or concave case respectively, temporarily by H,, h and its derivatives at 
p = Oare 

(h),=o = Ha@, 

(alnh/ap)p=o = (h/R,)/=, = C(R,/u)+ a-l, 

(az In h/a,82)p=o = ( - a2 In h/8a2)p=o = - ma-2. 

...................................................... 
Fluid Mech. 33 25 
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The complete form of In h can be calculated by constructing a series expansion 
from (48) as follows: 

or 

= In H ,  +In am + C(R,/v) 4 tan-1 (PI-) + (im) In [ 1 + (P/E)~], (49) 

h = H,am [ 1 + (E)2]’mexp [ C e) ’ tan- l  ({)I, 
The velocity of potential flow is 

The velocity along zero-streamline is 

Uo = l/ho = ( l /Hm)  = ( l/h,)p+,. (52) 

Then the velocity distribution of potential flow based on the velocity on the zero- 
streamline is given as 

I n  the inner region of p i 0, it  tends to 

6. Similar solutions with zero pressure gradient along the stream 
The solution of zero streamwise pressure gradient, which is given by m = 0, 

will be the most significant case of similar solutions. Similarity conditions for this 
particular case are 

(55 )  1 7 = (R , /cT)* /~ /~ ,  h = A(7), ha = H(7),  e = 2gtc., 

u = l /hb = A/H, p = P(7). 

Elimination of the variable H from Gauss’s equation (21) and the vorticity equa- 
tion (22) leads to an ordinary differential equation for A 

[2A(AZ)” + (7 - 4C) (Az)’]’ - 2CA-1[2A(A2)” + (q  - 4C) (AZ)’] = 0, (56)  

which can be integrated once to give 

2A(A2)”+(7-4C) (Az)’ = Bexp [2C/;A--ldq] (57) 

With non-zero value of B, the right-hand side of equation (57) tends to +CO 

at 7 = + co for C > 0, and to - co a t  7 = - co for C < 0. I n  order to avoid this 
singularity B is set to zero and we have 

AA” + (A’)2 + (i) (7 - 4C) A‘ = 0. ( 5 8 )  
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Boundary conditions for A are 

A = 1 ,  A ' = o  at 7=+00 ,  

A = O  a t  7 = -00, 
(59) 

in which the condition A' = 0 is automatically satisfied by putting B = 0. 

connecting with the asymptotic expansion of A in the outer region 
Equation (58) is integrated numerically with boundary conditions (59), by 

Ap-m - - 1 - &Aerfc [(q - 4C)/2] (60) 

at 7-4C = 7.  It is found that A( -00) = constant = K for A < A, and 
A( - 00) -+ - 00 for A > A,, where A, is a critical value of the constant A .  The 
present boundary condition at  7 = - 00 is satisfied by the limit solution given by 
K+ 0, resulting in a value of A = 0.16468. 

The function H is calculated by 

Ho/H = exp [ - A-Idy], 

where H, is the value of H a t  7 = 0. In  the outer region of 7 > q,, A is very close 
to unity, and therefore, 1/H tends to ecCT. I n  this region H,/H tends to 

H,/H = (Ho/HM) (H,/H) = (Ho/HM) e-c(~--?ld, (62) 

where H, is the value of H at the matching point 7,. 

equation (54), 
In  the inner region of outer potential flow the velocity distribution is given by 

U/Uo = h,/h = ecC7 (63) 

or UjU, = (h,/h,) (h,/h) = (ho/hM) e -c (7 -vd  (64) 

where hM is the value of h at 7 = 7,. 

connected with the velocity of potential flow by putting 
It is found that the velocity in the outer region of mixing layer can be smoothly 

H,= hM a t  7 =  7,. 

The matching is verified by 

I n  the present calculation the matching point is chosen a t  7, = 6 + 4C. 
The results of numerical integration for several values of C are shown in figure 3, 

positive value of C corresponding to the flow along a convex streamline. Solid 
lines show the values of velocity ratio. A, and broken lines the hypothetical 
velocity distribution H-I/Hrl. 

The distribution of velocity along the normal to streamline is calculated by 
u/U, = A(H-l/H&') (HC1/Uo) matching H-l with the outer potential flow a t  
qa1 == 6 + 4C. Numerical examples are shown in figure 4. Solid lines show the 
values of flow velocity u/U, in the mixing layer, and chain lines the values of 
outer potential flow UlU,. 

25-2 
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FIGURE 3. Similar solution, A and €€--I/H;l. 
T 

T 
FIGURE 4. Similar solution, u / U ,  and UIU,. 
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The form of zero-streamline which starts at the origin with zero initial slope 

(67) 1 
is given by x = HoeoOla(l +a2)-1[(cos8-asin8)e-e/"- 11, 

y = H,eeo/a( 1 + a2)--1 [(sin 0 +a cos 8 )  e-@/a-- a] ,  

where a is a combined curvature parameter defined by a = C(R,/u)t. Several 
examples are shown in figure 5, where convex streamlines for a > 0 or C > 0 

-0.. 

i I I I I 
I I 

- 20 0 20 40 60 80 100 120 140 

e-00 " ( z / H 0 )  

FIGURE 5.Zero-streamlines. 

bend downward while those a < 0 or C < 0 bend upward. I n  these cases the non- 
viscous flow is considered to be far above the zero-streamlines. 

The non-dimensional arc length of zero-streamline starting a t  the origin and 
that of normal lines to the stream originating a t  the zero-streamline are given 
from equations (40) and (41), 

s = H,a, n = H,a(R,/u)-t C-l[(H/H,,) - 11. (68) 

(69 1 
A physical interpretation of the similarity parameter 7 is now introduced by 

(R&)B n/s = (l/C) [(HIH,) - 11. 
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It is found that the similar solution can be expressed by this parameter in 
place of 7. Equation (69) is transformed to give the velocity of hypothetical basic 
flow Ho/H = [ 1 + C(R,/a): n/s]-'. (70) 

The distribution of flow velocity expressed as a function of (Re/rr)Bn/s is 
calculated and some examples are shown in figures 6,7 and 8. For convex stream- 
lines, the velocity of outer potential flow decreases as n increases (shown by 

1.8 

1 -6 

1.4 

1.2 

1 .o 

0.8 

0.6 

0.1 

0.2 

(I 

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 

(Re/@+ 4 s  

FIGURE 6. Velocity distributions, u/H;l. 

chain lines). The effect of turbulent mixing makes the flow decelerate in the 
inner part, resulting in the occurrence of a maximum velocity in the intermediate 
region. For concave flow no maximum velocity takes place, the velocity de- 
creasing monotonically from outer to inner region. 

In  figure 8, the velocity is expressed in terms of the value of the zero-streamline. 
I n  this form of representation, the effect of increasing the parameter C from zero 
is somewhat complicated, at first decreasing, and then increasing. Decreasing 
C from zero makes the change only monotonic. The velocity distribution u/U, 
in figure 7 has also a somewhat similar character. 

The pressure distribution across the streamlines is calculated by the integra- 
tion of (27) originating from the equation of motion along the normal to stream- 
lines. I n  this case the pressure distribution in the mixing layer is given from 
equation (28) 
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FIGURE 7. Velocity distributions, u/U,, 

1 14 

( R e / d  nis 

FIGURE 8. Velocity distributions, u/uo. 



392 

In  the region of outer potential flow at 7 > 7M,  it  is 

S.  Uchida and T .  Suzuki 

where pM represents the pressure at the matching point vM, which is set at 
6 + 4C in the present calculation. The value of pM -po is changed as a function of 

0.8 

0 4  

0 

- 0.4 . h 

F40 

3. 
I -04 

- 1.2 

- 1.6 

- 2.0 

Concave 
-- 0.30 

Convex 

- 2.4 
-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 

(R,l@t nb 
FIGURE 9. Pressure distributions, (p -po)/UE. 

C 

- 0.30 
- 0.25 
- 0.20 
- 0.15 
- 0.10 
- 0.05 

0 
0.05 
0.10 
0.15 
0.20 
0.25 

0.9691 
0.9680 
0.9642 
0.9648 
0.9693 
0.9799 
1*0000 
1.0351 
1.0953 
1.201 1 
1.4034 
1.8818 

1.2182 
1.0507 
0.8943 
0-7502 
0.6193 
0.5022 
0.3988 
0.3088 
0.2313 
0.1649 
0.1069 
0.0519 

0.3954 
0.3156 
0.2385 
0.1664 
0.1016 
0.0457 
0 

- 0.0346 
- 0.0578 
- 0.0704 
- 0.0709 
- 0.0560 

16.6888 
11.0606 
6.8929 
3.9591 
1.9957 
0.7486 
0 

- 0.4204 
- 0.6368 
- 0.7343 
-0.7693 
- 0.7795 

t Outer potential flow. 

TABLE 1. Pressure difference and shearing stress (a)  

co 
03 

co 
co 
co 
co 
0 

- 0.5379 
- 0.2780 
-0.1381 
- 0.0659 
- 0.0302 
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T ~ .  If qM tends to + 00, the outer portion of flow approaches more and more that 
of potential flow, and therefore the value of p M - p  will approach a constant 

C 

- 0.30 
- 0.25 
- 0.20 
- 0.15 
- 0-10 
- 0.05 

0 
0.05 
0.10 
0.15 
0.20 
0.25 

UO - 
uo 

0.8433 
0.8099 
0.7726 
0.7315 
0-6869 
0-6390 
0.5881 
0.5344 
0-4779 
0.4177 
0.3516 
0.2720 

1.7131 0-5560 
1.6017 0.4830 
1.4980 0.3995 
1.4018 0.3110 
1.3127 0.2152 
1.2300 0.1119 
1.1532 0 
1.0814 -0.1212 
1.0130 - 0.2532 
0.9448 - 0.4035 
0.8652 - 0.5736 
0.7015 - 0.7564 

t Outer potential flow. 

PO-PM PM-pmt 
4 % 

23.4696 co 
16.8609 co 
11.5463 co 
7.3979 03 

4.2299 co 
1.8335 co 
0 0 

- 1.4722 - 1.8837 
- 2.7886 - 1.2176 
- 4.2082 -0.7913 
- 6.2233 - 0.5329 
- 10.5387 - 0.4082 

TABLE 2. Pressure difference and shearing stress ( b )  

value for a convex case and - co for a concave case. Numerical examples are 
shown in figure 9 and in table 1. 

I n  some cases the pressure distribution expressed in terms of the dynamic. 
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pressure on the zero-streamline of the mixing layer is conveniently used. It is 
simply calculated by dividing (7 1) and ( 7 2 )  by u:/ U:. Some examples are shown 
in figure 10 and in table 2. It is found that for convex flows the pressure increases 
as C increases. 

C 

FIGURE 11. Shearing stress along zero-streamline. 

The shearing stress along the zero-streamline is given by 

(Rela)’ (T,@)o/U:  = 4(Hc2/u;) [A(A’ - 2c)]p 0.  

(Rela)* (7,,9)0/~: = 4(HF2/u:) [A(A’ - 2C)] , ,  0.  

(73) 

The shearing stress expressed in terms of the dynamic pressure on the zero- 
streamline of mixing layer is given by 

These values are calculated and are shown in figure 11 and in tables 1 and 2 .  With 
increasing the value of C, the shearing stress decreases until it reaches zero a t  

(74) 

c = 0.285. 

7. Conclusion 
Curvature effects on the incompressible turbulent mixing in the free jet bound- 

ary are analysed theoretically. The influence of curvature and of turbulent mixing 
on the velocity and on the pressure distribution are investigated by a similar 
solution referred to the streamline co-ordinates. It is found that the effects of 
curvature are similar to those in laminar flows 
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